ELECTROCHEMISTRY

Types of Cells

Electrochemical/Galvanic/Voltaic Cell

- Spontaneous Reaction → Electrical Energy
- Anode (-): Oxidation; Cathode (+): Reduction

Electrolytic cell

- Electrical Energy used for non-Spontaneous Reaction
- Anode (+): Oxidation; Cathode (-): Reduction

Electrochemical/Galvanic/Voltaic Cell

Important Points : Daniel Cell (Galvanic)

- Anode: $Zn(s) \rightarrow Zn^{2+} (aq) + 2e^{-}$
- Cathode: Cu^{2+} (aq) + $2e^{-} \rightarrow Cu(s)$
- Overall Reaction: $Zn(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Zn^{2+}(aq)$
- Representation: Zn | Zn²⁺(aq) | | Cu²⁺(aq) | Cu.
- Here || represents salt Bridge which completes circuit.
- The concentration of Zinc Sulphate increases while the concentration of Copper Sulphate decreases.
- The zinc rod loses mass while copper gains it.
- In both the compartments, the solutions remain electrically neutral. Net cell Potential, E°cell = 1.1 eV

Salt Bridge

- U-Tube containing solutions of inert electrolytes.
- KCI, KNO₃, K₃SO₃ or NH₄NO₃.
- KCI is not used in electrodes of Ag, TI, Pb, Hg.
- Inner circuit completed by flow of ions through S.B.
- Maintains Electrical neutrality.
- Prevents Liquid-Liquid Junction potential.
- Ionic mobility (Cation) = Ionic Mobility (Anion)

LHOTT

Standard Electrode Potential (E°)

- Potential difference between electrode and solution at standard coditions of 1M at 25°C and 1 atm
- Oxidation Potential : $E^{o}_{Zn^{2+}/Zn}$ These have equal
- Reduction Potential : $E^{o}_{Zn/Zn^{2+}}$ and opposite values

Standard Reduction Potential (E^{red})

- Mostly used in questions (values provided)
- Representation : E^o_{M^{n*}/M}
- For Hydrogen, SRP is taken as E^oH₂/H+= 0

EMF of a cell

- Potential difference between two electrodes
- EMF = Red. Pot. where _ Red. Pot. where reduction occurs

 Oxidation occurs
- NOTE: Use only Reduction potential to not get confused

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$

Standard Hydrogen Electrode

Reference electrode used to find electrode potential of other electrodes.

Anode: $H_2(g) \rightarrow 2e^- + 2H^+(aq)$

Cath.: $2e^- + 2H^+(aq) \rightarrow H_2(g)$

Representation of cell:

 $Pt(s) | H_2(g) | H^*(aq) | | H^*(aq) | H_2(g) | Pt(s)$

Electrochemical Series

 $E^{o}_{H_{2}/H^{+}}$ Reduction Pot. >0 Reduction Pot. <0

Acts as Cathode Acts as Anode Stronger reducing Agents Stronger Oxidising Agents

— Thermal Stability of metal oxide —— Corrosion Tendency

Li >K > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > H=0 > Important Metal series Trick Cu > Hg > Ag > Au > Pt

- Lion Kings Can Not Make A Zebra Fed Near Sun Pablo
- **Cute Mercury Silver Gold Platinum**

Other Points about Electrochemical Series

- Lithium has most negative Reduction potential. Strongest reducing Agent
- Fluorine has most Positive Reduction potential. Strongest Oxidising Agent
- Reactivity Decreases on Going from Li to F.
- If we go from Li to F,
- The Metal lying above in E.C.S displaces the other
 - The non metal lying below in E.C.S.displaces the other metal lying above.

· IUIT

Nernst Equation

Half Cell Nernst Equation : Mⁿ⁺ + ne⁻ → M

$$E = E_{cell}^{o} - \frac{0.059}{n} log \frac{1}{[M^{n+}]}$$
 at 298K

Half Cell Nernst Equation : Bⁿ⁺ + A → Aⁿ⁺ + B

$$E = E^{o}_{cell} - \frac{0.059}{n} log \frac{[A^{n+}]}{[B^{n+}]}$$
 at 298K

At Any other **Temperature**

$$E = E_{cell}^{o} - \frac{RT}{nF} ln \frac{[A^{n+}]}{[B^{n+}]}$$

Relation between ΔG and EMF of cell

ΔG is an extensive (Additive) Property, E° is an intensive (non Additive) Property.

$$\Delta G = -nRTlnK_c$$

= $-nFE^o_{cell}$

If two half cells Having Potentials E₁° & E₂° are combined to give third half cell with E3°. Then,

$$E_3^o = \frac{n_1 E_1^o + n_2 E_2^o}{n_3}$$
 Where, n = Number of electrons involved

electrons involved

Concentration Cells, Here (E°=0)

Electrolytic Concentration Cells

Same Substance used with different concentration

Cathode: $M^{n+}(c_2) + ne^- \rightarrow M(s)$

Anode: $M(s) \rightarrow M^{n+}(c_1) + ne^-$

Overall Reaction:

$$M^{n+}(c_2) \rightarrow M^{n+}(c_1)$$

$$E = \frac{0.059}{n} \log \frac{c_2}{c_1}$$

Electrode Concentration Cells

E.g. Two hydrogen electrodes at different pressure dipped in sam E = solution of H^+ ion

$$E = \frac{0.059}{n} \log \frac{p_2}{p_1}$$

Electrolytic Cell

- Cells which bring Chemical Change during passage of electric current.
- Cations go to Cathode
- · Anions go to Anode

According to Preferential Discharge Theory,

- In case of Cations, Higher E°(red), Migration faster.
- In case of Anions, SO₄²-<NO₃-<Cl-<Br-<l-<OH-

44

Product of Electrolysis					
Ionic Comp.	Cathode	Anode	Electrode		
CuSO ₄	Cu	O ₂	Pt/graphite		
CuSO ₄	Cu	Cu	Cu Electrode		
AgNO ₃	Ag	O ₂	Pt/graphite		
NaCl	H₂	Cl ₂	Pt/graphite		
Conc. H₂SO₄	2H ⁺ + 2e ⁻ →H ₂	$2SO_4^{2-} \rightarrow S_2O_8^{2-} + 2e^-$	Pt/graphite		
AgNO ₃	Ag⁺ + e⁻→Ag	$Ag \rightarrow Ag^* + e^-$	Ag (inert)		

Faraday's Law of Electrolysis

1st Law of Faraday

$$W \propto Q$$

$$W = ZQ$$

$$W = Z \times i \times T$$

Z = Electrochemical Equivalent; i=current; t = time

Other important formula from exam P.O.V.

$$W = \frac{\text{eq. weight}}{96500} \times Q$$

2nd Law of Faraday

Passage of the same charge through diff. electrolytes brings in equal equivalents of ion to be ox. or red.

$$\frac{W_{A}}{E_{A}} = \frac{W_{B}}{E_{B}} = \frac{W_{C}}{E_{C}}$$

45

Formulas for Conductance					
Resistance V = Voltage, I = Current		$R = \frac{V}{I}$	Ohm		
Resistivity A= area of Cross sec I = dist. b/w electrodes		$\rho = \frac{RA}{l}$	Ohm-m		
Conductance		$G = \frac{1}{R}$	ohm ⁻¹ Siemen (S)		
Conductivity		$k = \frac{l}{RA}$	ohm ⁻¹ m ⁻¹ S m ⁻¹		
Cell Constant		$c. c. = \frac{l}{A} = k \times R = \frac{k}{G}$			
Types of Conductivities					
Molar Conductivity	∧ _m =	$=\frac{k\times 1000}{C}$	S cm² mol ⁻¹		
Molar Conductivity	$\Lambda_{eq} = \frac{k \times 1000}{N}$		S cm² mol ⁻¹		
Relationship	Λ _m =	$\Lambda_{\rm eq} \times {\rm n.f.}$	n-factor is total +ve or -ve charge	9	

Debye huckel Molar Conductivity

Relation between Molar conductivity and concentration

Kohlrauch's law

If the limiting molar conductivity of the cations is denoted by λ₊° and that of the anions by λ₋° then the limiting molar conductivity of electrolyte is:

$$\Lambda_{\rm m}^{\ \ o} = v_{+}\lambda_{+}^{\ \ o} + v_{-}\lambda_{-}^{\ \ o}$$
 v = no. of ions present

Application to calculate D.O.D of weak Electrolytes using conductivity

$$\alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm m}^{\rm o}}$$

$$K_{a} = \frac{C\alpha^{2}}{(1 - \alpha)} = \frac{C\Lambda_{m}^{2}}{\Lambda_{m}^{o} (\Lambda_{m}^{o} - \Lambda_{m})}$$

Equilibrium constant

Pb Storage Batttery

Fuel Cells

ACathode:
$$_{2}(g) + 2H_{2}O(1) + 4e^{-}$$

 $\rightarrow 4OH^{-}(aq)$

C Anode:
$$H_2(g) + 40H^-(aq)$$

 $\rightarrow 4H_2O(l) + 4e^-$

Overall: 2H₂(g) + O₂(g) → 2H₂O(l)
Galvanic cells that are designed
to convert the energy of
combustion of fuels like
hydrogen, methane, methanol,

directly into electrical energy are called fuel cells.

Efficiency of a fuel cell = $(\Delta G/\Delta H) \times 100$

